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Bayesian networks

 Asimple, graphical notation for conditional independence
assertions and hence for compact specification of full joint
distributions

e Syntax:
— aset of nodes, one per variable
— adirected, acyclic graph (link = "directly influences")

— a conditional distribution for each node given its parents:
P (X, | Parents (X))

* Inthe simplest case, conditional distribution represented as a
conditional probability table (CPT) giving the distribution over
X; for each combination of parent values



Example

Topology of network encodes conditional independence

assertions: @
Toothache @

Weather is independent of the other variables

Toothache and Catch are conditionally independent given
Cavity



Example

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary
doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?

Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects "causal" knowledge:
— A burglar can set the alarm off
— An earthquake can set the alarm off
— The alarm can cause Mary to call
— The alarm can cause John to call
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Compactness

A CPT for Boolean X; with k Boolean parents has 2% rows for the combinations of

parent values }E)

Each row requires one number p for X; = true ;El
(the number for X; = false is just 1-p) @ @

If each variable has no more than k parents, the complete network requires O(n -
2) numbers

l.e., grows linearly with n, vs. O(2") for the full joint distribution

For burglarynet, 1 +1+4 + 2 + 2 =10 numbers (vs. 2>-1 = 31)



Semantics

The full joint distribution is defined as the product of the local conditional

distributions:
n ©

P(X,..,X)=m_,P (X | Parents(X.)) }E\L

g ®

e.g., Pirm~aan—bn—e)

=P(jla)P(m[a)P(a| —b, —e)P (—b) P (—e)



Constructing Bayesian networks

* 1. Choose an ordering of variables X, ... X,
e 2.Fori=1ton

— add X; to the network

— select parents from X,, ... ,X.; such that
P (X; | Parents(X)) =P (X; [ X, ... X;;)

This choice of parents'guarantees:
n
P(X,..,X) = P(X, | Xy o) Xip)
(chain rule)
=m;_,P (X | Parents(X))
(by construction)



Example

e Suppose we choose the ordering M, J, A, B, E

P(J | M)=P(J)?



Example

e Suppose we choose the ordering M, J, A, B, E

.

P(J | M)=P(J)?
No
PA[J M)=PA[J1)?PA][J M)=P(A)?



Example

e Suppose we choose the ordering M, J, A, B, E
* (Warycais)

P(J | M)=pP(J)?

No

PA|[JM)=PA|[J)?PA]J M)=PA)? No
PB[A JM)=PB|[A)

P(B [ A, J M)=P(B)?



Example

e Suppose we choose the ordering M, J, A, B, E

P(J | M)=P(J)?
No
PA|[JM)=PA|[J)?PA]J M)=PA)? No
PB|A J,M)=P(B|[A)? Yes

P(B | A, J M)=P(B)? No

P(E|B A,l, M)=P(E [ A)?

P(E| B A J, M)=P(E | A, B)?




Example

e Suppose we choose the ordering M, J, A, B, E

P(J | M)=P(J)?
No

PA[J M)=PA[J])?PA][J M)=P(A)? No
PB[A JM)=PB|[A)Yes

P(B [ A, J M)=P(B)? No

P(E| B A,l, M)=P(E[A)? No

P(E| B A J, M)=P(E | A, B)? Yes




Example contd.

Burga

Earthquake

Deciding conditional independence is hard in noncausal directions

(Causal models and conditional independence seem hardwired for
humans!)

Network is less compact: 1 +2 +4 + 2 + 4 = 13 numbers needed



Summary

 Bayesian networks provide a natural
representation for (causally induced)
conditional independence

 Topology + CPTs = compact representation of
joint distribution

 Generally easy for domain experts to
construct



The Doorbell Problem

 The doorbell rang at 120 clock In the
midnight
vwas someone there at the door?

Uid Mohan wake upy




Reasoning about Doorbell 1

» Given L ell, can we say
| | because Af or
?
« Abductive Reasoning
But NO, the doorbell might start
ringing due to some other reason
e.g.
short circuit,
wind

Animals







Reasoning about Doorbell

Given , can we say
pecause |

)7
Deductive Reasoning
Yes, only IF Proposition 2 is always
true,
However, in general Mohan may not
always wake up, even Iif the bell
rings.




Any Way Out?

« However, problems like ti
doorbell are very common in re:

1 need o reason under such

/e It by proper modelin
and
ping appropriate reasoil
;f-=::.!r1r1||:.]ur'5"-




Sources of Uncertainty - 1

» Implications may be weak

doorbell (0.8) = wake (Mohan)

+ Imprecise language like ofte

crnatirm o

Need to quandify these In terms of frequencies

Need to design rules for reasoning with these
frequencies




Sources of Uncert.ainty -

Precise information may be

p"‘l-]I

r._)

1Too many antecedents or consequents

Incomplete knowledge
We may not know or guess all the
possible antecedents or consequents
rhe bell rang due o some

.1_ |...i|' ‘tf"”




Sources of Uncertainty - 3

Conflicting information

quantification of measure of belief
Two doctors give different opinions about the patient depends on
their belief system

 Propagation of uncertainties
In absence of interdependencies propagation of
uncertain Kno :.1{-::..?1} Increases the uncertainty

ine conclusions










A Relook at MYCIN Rules




Mycin: Certainty Factors

What do certainty factors mean?

it Is an expert's estimate of degree of belief or
disbelief In an evidence hypothesis relationship

e—2>n

it is a subjective probability estimate provided by the
expert from his/her experience

Measure of Belief MB(h,e)







Certainty Factors




Certainty Algebra
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MB (h | e) is read as measure of belief hypothesis given evidence



Certainty Factors

Addrtional Evidence







Only very recently, the scientific and engineering community has begun to
recognize the utility of defining multiple types of uncertainty. In part the greater depth of
study mto the scope of uncertainty 1s made possible by the significant advancements in
computational power we now enjoy. As systems become computationally better
equipped to handle complex analyses, we encounter the limitations of applying only one
mathematical framework (traditional probability theory) used to represent the full scope
of uncertainty. The dual nature of uncertainty 1s described with the following definitions

trom [Helton, 1997]:

Aleatory Uncertainty — the type of uncertainty which results from the fact that a
system can behave in random ways

also known as: Stochastic uncertainty, Type A uncertainty, Ireducible
uncertamty, Varability, Objective uncertainty

Epistemic Uncertainty- the type of uncertamty which results from the lack of
knowledge about a system and i1s a property of the analysts performing the
analysis.

also known as: Subjective uncertainty, Type B uncertainty, Reducible uncertainty,
State of Knowledge uncertainty. Ignorance



BAYES THEOREM

Probability that claim h is true Prior probability that Likelihood of evidence if prior
given evidence e and the the hypothesis is true hypothesis is true

background knowledge b v

P(h|b)xP(e]|h,b)

P(hleb) =
P(Mh|b)xP(e|h,b) + P(*h|b)xP(e|”h,b)
Read » = NOT
h -> hypothesis
e ->evidence
b -> background knowledge
P -> Probability or Claim is true






Empirical data and claims — Observational data and claims




Consider a simple example

a. There is someone at the door ringing the doorbell. It will have 50% chance of
that being a qirl.

b. But the probability that the person is a girl is 99% when you know the name is
“Jaynes”.

c. The fact | knew is that out of 100 people, 99 people are girls by the name of
“Jaynes”. But one may be a boy also.

Applying Bay’s theorem

Probability of Jaynes that are girls
“Jaynes” being a girl is true =

Jaynes that are girls + Jaynes that are boys

= 99%



Example from Jankiraman book-

Consider an incandescent bulb manufacturing unit. Here machine M1, M2 and M3 make 30%, 30% and 40%
of the total bulbs. Of their output let's assume that 2%, 3% and 4% are defective. A bulb is drawn at random
and is found defective. What is the probability that the bulb is made by machine M1, M2 or M3.

Solution — Let E1, E2 and E3 be the events that a bulb selected at random is made by machine M1, M2 and
M3. Let Q denote that it is defective.

Prob(E1l) = 0.3, Prob(E2) = 0.3 and Prob(E3) = 0.4 (Given Data)

Prob of drawing a defective bulb made by M1 = Prob (Q|E1) = 0.02
Prob of drawing a defective bulb made by M2 = Prob (Q|E2) = 0.03
Prob of drawing a defective bulb made by M1 = Prob (Q|E3) = 0.04

Therefore
Prob (E1) * Prob(Q|E1)

Prob (E1|Q) = -------—-mmmmmmmmmm oo =0.3*0.02/(0.03*0.2) +(0.03*0.3) + (0.04*0.4) = 0.1935
Sum (1,3) Prob(Ei) * Prob (Q|Ei)

Prob (E2) * Prob(Q|E2)
Prob (E2|Q) =  -------—-mm-mmmmmmm e =0.3*0.03/(0.03*0.2) +(0.03*0.3) + (0.04*0.4) = 0.2903
Sum (1,3) Prob(Ei) * Prob (Q|Ei)

Prob (E3|Q) = 0.5162



Disease: 10% have it, a test to detect it is 92% accurate,

and has a 5% false alarm rate.
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1. You tested positive, what is the probability you have the disease?
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2. Your friend tested negative, what is the probability your friend has the disease?



4.3 Dempster-Shafer Theory

Dempster-Shafer theory is an approach to combining
evidence

Dempster (1967) developed means for combining
degrees of belief derived from independent items of
evidence.

His student, Glenn Shafer (1976), developed method
for obtaining degrees of belief for one question from
subjective probabilities for a related question

People working in Expert Systems in the 1980s saw
their approach as ideally suitable for such systems.



4.3 Dempster-Shafer Theory

Each fact has a degree of support, between 0 and 1:
— 0 No support for the fact
— 1 full support for the fact

Differs from Bayesian approah in that:
— Belief in a fact and its negation need not sum to 1.

—  Both values can be 0 (meaning no evidence for or against the
fact)




4.3 Dempster-Shafer Theory

©
G) - { 81, 82, ..y en}
Where:

— @ is the set of possible conclusions to be drawn

— Each 6, is mutually exclusive: at most one has to be
true.

— O is Exhaustive: At least one 6, has to be true.
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Difference Between database and knowledge base

Database can be lots of things, but usually it means a relational database such as
Oracle, Microsoft Access, MySQL, etc. These are typically use for storing sets of
related data such as accounting records, questions on yahoo answers, etc.

A Knowledge base is used in Al. When an Al algorithm tries to make a decision, it
gueries its knowledge base to determine how to act. Depending on the result it can
then update the knowledge base. It is part of machine learning.

A database stores data - for example, personnel data, sales data etc. As they
stand, simply raw data are not of much practical value, unless they can be
transformed into information - for example you may be able to analyze the
sales data and arrive at purchase patterns, so your company can leverage that
information into profit. Now that data has become information. Now, the
question to ask is: what kind of "expertise" did you apply in transforming the
raw data into useful information? Can you store that "expertise”, that "how
to", in some place, so that somebody else or perhaps some automated
process can use that "stored knowledge" to do future analysis? There, you
have your knowledge base.



Deductive Reasoning / Modus Ponens

1. Deduce new information from logically related known information

2. A deductive argument offers assertions that lead automatically to a
conclusion

For example if there is a dry wood, oxygen and a spark then there will be fire

Given : There is awood, oxygen and a spark

We can deduce : There will be afire

All men are Mortal, Socrates is a man therefore Socrates is mortal.

Inductive Reasoning

1. From a limited set of observations, we form a “generalization”
For example — Observation: All the crows that | have seen in my life are black
Conclusion: All crow are black

Abductive Reasoninq

1. “Deduction is exact” in that the deductions follow a logically provable way from
the basic axioms (sentences)
2. Abductive is a form of deduction that allows for plausible inference ie
conclusion may be wrong.
For example Implication : She carries an umbrella if it is raining
Axiom : She is carrying an umbrella
Inference / Conclusion: It is raining



Analoqgical reasoning

1. Draw analogy between two situations looking for similarities and differences
For example When you say driving a truck is just like driving a car.

Commonsense Reasoning

1. Heuristic reasoning — gained thru experience, rule-of-thumb
for example If you are moving in a car when it is raining then reduce speed
Extensively used by doctors while diagnosing

Non-Monotonic Reasoning

1. Used when the facts of the case is not static and changes with time
For example — If the wind blow then the curtain sway
After sometime this wind stops blowing the truth no longer exist

Monotonic Reasoning

1. Used when the facts does not change over time
for example The sunrises in the east



Forward chaining is one of the two main methods of reasoning when using inference rules (in
artificial intelligence) and can be described logically as repeated application of modus ponens.
Forward chaining is a popular implementation strategy for expert systems, business and production
rule systems. The opposite of forward chaining is backward chaining.

Forward chaining starts with the available data and uses inference rules to extract more data (from
an end user for example) until a goal is reached. An inference engine using forward chaining
searches the inference rules until it finds one where the antecedent (If clause) is known to be true.
When found it can conclude, or infer, the consequent (Then clause), resulting in the addition of new
information to its data.

Inference engines will iterate through this process until a goal is reached.

For example, suppose that the goal is to conclude the color of a pet named Fritz, given that he
croaks and eats flies, and that the rule base contains the following four rules:

If X croaks and eats flies - Then X is a frog

If X chirps and sings - Then X is a canary

If Xis afrog - Then X is green

If X is a canary - Then X is yellow

This rule base would be searched and the first rule would be selected, because its antecedent (If
Fritz croaks and eats flies) matches our data. Now the consequents (Then X is a frog) is added to
the data. The rule base is again searched and this time the third rule is selected, because its
antecedent (If Fritz is a frog) matches our data that was just confirmed. Now the new consequent
(Then Fritz is green) is added to our data. Nothing more can be inferred from this information, but
we have now accomplished our goal of determining the color of Fritz.

Because the data determines which rules are selected and used, this method is called data-driven,
in contrast to goal-driven backward chaining inference. The forward chaining approach is often
employed by expert systems, such as CLIPS.

One of the advantages of forward-chaining over backward-chaining is that the reception of new
data can trigger new inferences, which makes the engine better suited to dynamic situations in
which conditions are likely to change.




Backward chaining starts with a list of goals (or a hypothesis) and works backwards from the consequent to the
antecedent to see if there is data available that will support any of these consequents.[2 An inference engine using
backward chaining would search the inference rules until it finds one which has a consequent (Then clause) that
matches a desired goal. If the antecedent (If clause) of that rule is not known to be true, then it is added to the list
of goals (in order for one's goal to be confirmed one must also provide data that confirms this new rule).

For example, suppose that the goal is to conclude the color of my pet Fritz, given that he croaks

An Example of Backward Chaining.

1.1f X croaks and eats flies — Then X is a frog

2.1f X chirps and sings — Then X is a canary

3.If Xisafrog — Then X is green

4.If X'is a canary — Then X is yellow

This rule base would be searched and the third and fourth rules would be selected, because their consequents
(Then Fritz is green, Then Fritz is yellow) match the goal (to determine Fritz's color). It is not yet known that Fritz
Is a frog, so both the antecedents (If Fritz is a frog, If Fritz is a canary) are added to the goal list. The rule base is
again searched and this time the first two rules are selected, because their consequents (Then X is a frog, Then X
IS a canary) match the new goals that were just added to the list. The antecedent (If Fritz croaks and eats flies) is
known to be true and therefore it can be concluded that Fritz is a frog, and not a canary. The goal of determining
Fritz's color is now achieved (Fritz is green if he is a frog, and yellow if he is a canary, but he is a frog since he
croaks and eats flies; therefore, Fritz is green).

Note that the goals always match the affirmed versions of the consequents of implications (and not the negated
versions as in modus tollens) and even then, their antecedents are then considered as the new goals (and not the
conclusions as in affirming the consequent) which ultimately must match known facts (usually defined as
consequents whose antecedents are always true); thus, the inference rule which is used is modus ponens.
Because the list of goals determines which rules are selected and used, this method is called goal-driven, in
contrast to data-driven forward-chaining inference. The backward chaining approach is often employed by expert
systems.

Programming languages such as Prolog, Knowledge Machine and ECLiIPSe support backward chaining within
their inference engines




Boolean vs Fuzzy
T 1.0 — »Tall (1.0)

Degree of

taliness g o B

» Not Tall (0.0)




Boolean vs Fuzzy

height

T 1.0
Degree of » Quite Tall (0.8)
t‘“""‘“""ﬂ . | » Not very Tall

(0.2)




Logical Operators for Fuzzy




AMND OR
mun(A B ) max(A H)




Fuzzy System
Structure




Fuzzy Set
Representation

Tall =
(0/5, 0.25/5.5, 0.7/6, 116.5, 1/7)

- Numerator: membership value

- Denominator: actual value of
the variable




Fuzzy Rules

*lfxisAthenyis B
SE—— .S
premise or conclusion or

antecedent consequent

® If hotel service is good then
tip is average




Fuzzy Rules

¢ If Speed is slow Then make
the acceleration high

e |f Temperature is low AND
Pressure is medium Then
make the speed very slow




Antecedent Cunnnqucnt




