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Bayesian networksBayesian networks

• A simple, graphical notation for conditional independence 
d h f f f f llassertions and hence for compact specification of full joint 

distributions

• Syntax:
– a set of nodes, one per variable
–
– a directed, acyclic graph (link ≈ "directly influences")
– a conditional distribution for each node given its parents:

P (Xi | Parents (Xi))

• In the simplest case, conditional distribution represented as a 
conditional probability table (CPT) giving the distribution over 
Xi for each combination of parent valuesXi for each combination of parent values



ExampleExample

• Topology of network encodes conditional independence 
assertions:

• Weather is independent of the other ariables• Weather is independent of the other variables
• Toothache and Catch are conditionally independent given 

Cavity



ExampleExample
• I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary 

d 't ll S ti it' t ff b i th k I th b l ?doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?

• Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

• Network topology reflects "causal" knowledge:
– A burglar can set the alarm off
– An earthquake can set the alarm off
– The alarm can cause Mary to call
– The alarm can cause John to call



Example contd.Example contd.



CompactnessCompactness
• A CPT for Boolean Xi with k Boolean parents has 2k rows for the combinations of 

t lparent values

• Each row requires one number p for Xi = true
(the number for  Xi = false is just 1‐p)( i f j p)

• If each variable has no more than k parents, the complete network requires O(n ∙
2k) numbers

• I.e., grows linearly with n, vs. O(2n) for the full joint distribution

• For burglary net 1 + 1 + 4 + 2 + 2 = 10 numbers (vs 25 1 = 31)• For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 25‐1 = 31)



SemanticsSemantics

The full joint distribution is defined as the product of the local conditional 
distributions:

P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi))

n

( 1, , n) i = 1 ( i | ( i))

e.g., P(j ∧m ∧ a ∧ ¬b ∧ ¬e)g , (j )

= P (j | a) P (m | a) P (a | ¬b, ¬e) P (¬b) P (¬e)



Constructing Bayesian networksConstructing Bayesian networks

• 1. Choose an ordering of variables X1, … ,Xn
• 2. For i = 1 to n

– add Xi to the network
–
– select parents from X1, … ,Xi‐1 such that

P (Xi | Parents(Xi)) = P (Xi | X1, ... Xi‐1)

This choice of parents guaranteesnThis choice of parents guarantees:

P (X1, … ,Xn)  = πi =1 P (Xi | X1, … , Xi‐1)
( h i l )

n

n

(chain rule)
= πi =1P (Xi | Parents(Xi))

(by construction)



Example

• Suppose we choose the ordering M, J, A, B, E

Example

pp g , , , ,

( | ) ( )P(J | M) = P(J)?



Example

• Suppose we choose the ordering M, J, A, B, E

Example

pp g , , , ,

•

P(J | M) = P(J)?

NoNo

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)?



Example

• Suppose we choose the ordering M, J, A, B, E

Example

pp g , , , ,

•

P(J | M) = P(J)?

NoNo

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No

P(B | A, J, M) = P(B | A)?P(B | A, J, M)   P(B | A)? 

P(B | A, J, M) = P(B)?



Example

• Suppose we choose the ordering M, J, A, B, E

Example

pp g , , , ,

•

P(J | M) = P(J)?

No

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No

P(B | A J M) = P(B | A)? YesP(B | A, J, M) = P(B | A)? Yes

P(B | A, J, M) = P(B)? No

P(E | B, A ,J, M) = P(E | A)?P(E | B, A ,J, M)   P(E | A)?

P(E | B, A, J, M) = P(E | A, B)?



Example

• Suppose we choose the ordering M, J, A, B, E

Example

pp g , , , ,

•

P(J | M) = P(J)?

No

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No

P(B | A J M) = P(B | A)? YesP(B | A, J, M) = P(B | A)? Yes

P(B | A, J, M) = P(B)? No

P(E | B, A ,J, M) = P(E | A)? NoP(E | B, A ,J, M)   P(E | A)? No

P(E | B, A, J, M) = P(E | A, B)? Yes



Example contd.Example contd.

idi di i l i d d i h d i l di i• Deciding conditional independence is hard in noncausal directions

• (Causal models and conditional independence seem hardwired for 
humans!)

• Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed



SummarySummary

• Bayesian networks provide a naturalBayesian networks provide a natural 
representation for (causally induced) 
conditional independenceconditional independence

• Topology + CPTs = compact representation of 
joint distributionjoint distribution

• Generally easy for domain experts to 
construct

















Two doctors give different opinions about the patient depends on 
their belief system



Uncertainty gets 
t d

Some certainty point 0.7

propagated
Strength of belief









Evidence does not supportEvidence does not support 
hypothesis





MB (h I e) is read as measure of belief hypothesis given evidenceMB (h I e) is read as measure of belief hypothesis given evidence 









BAYES THEOREM

Probability that claim h is true  Prior probability that  Likelihood of  evidence if prior 
h h i i

P (h | e, b) =
P (h | b) x P (e | h, b)

given evidence  e and the 
background knowledge b

the hypothesis is true hypothesis is true 

( | , )
P (h | b) x P (e | h, b) + P ( ^h | b) x P (e | ^h, b)

Read ^ =  NOT 

h  -> hypothesis
e  -> evidence
b -> background knowledgeb  > background knowledge
P  -> Probability or Claim is true    





Empirical data and claims – Observational data and claims



Consider a simple example 

a There is someone at the door ringing the doorbell It will have 50% chance ofa. There is someone at the door ringing the doorbell. It will have 50% chance of 
that being a girl.

b. But the probability that the person is a girl is 99% when you know the name is 
“Jaynes”. 

c. The fact I knew is that out of 100 people, 99 people are girls by the name of 
“Jaynes” But one may be a boy alsoJaynes . But one may be a boy also.

Applying Bay’s theorem

P b bilit f J th t i lProbability of                       Jaynes that are girls
“Jaynes” being a girl is true      = _________________________

Jaynes that are girls + Jaynes that are boys y g y y

= 99%      



Example from Jankiraman book-

Consider an incandescent bulb manufacturing unit. Here machine M1, M2 and M3 make 30%, 30% and 40% 
of the total bulbs. Of their output let’s assume that 2%, 3% and 4% are defective. A bulb is drawn at random p %, % %
and is found defective. What is the probability that the bulb is made by machine M1, M2 or M3.

Solution – Let E1, E2 and E3 be the events that a bulb selected at random is made by machine M1, M2 and 
M3 Let Q denote that it is defectiveM3. Let Q denote that it is defective.

Prob(E1) = 0.3, Prob(E2) = 0.3 and Prob(E3) = 0.4 (Given Data)

Prob of drawing a defective bulb made by M1 = Prob (Q|E1) = 0.02
Prob of drawing a defective bulb made by M2 = Prob (Q|E2) = 0.03
Prob of drawing a defective bulb made by M1 = Prob (Q|E3) = 0.04

Therefore 
Prob (E1) * Prob(Q|E1)Prob (E1)  Prob(Q|E1)

Prob (E1|Q) =    ------------------------------------------- = 0.3* 0.02 / (0.03*0.2) +(0.03*0.3) + (0.04*0.4) = 0.1935
Sum (1,3) Prob(Ei) * Prob (Q|Ei) 

Prob (E2) * Prob(Q|E2)
Prob (E2|Q) =    ------------------------------------------- = 0.3* 0.03 / (0.03*0.2) +(0.03*0.3) + (0.04*0.4) = 0.2903

Sum (1,3) Prob(Ei) * Prob (Q|Ei)

Prob (E3|Q)  =  0.5162
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Difference Between database and knowledge base

Database can be lots of things, but usually it means a relational database such as
Oracle, Microsoft Access, MySQL, etc. These are typically use for storing sets of
related data such as accounting records, questions on yahoo answers, etc.related data such as accounting records, questions on yahoo answers, etc.

A Knowledge base is used in AI. When an AI algorithm tries to make a decision, it
queries its knowledge base to determine how to act. Depending on the result it can
then pdate the kno ledge base It is part of machine learningthen update the knowledge base. It is part of machine learning.

A database stores data - for example, personnel data, sales data etc. As they
stand simply raw data are not of much practical value unless they can bestand, simply raw data are not of much practical value, unless they can be
transformed into information - for example you may be able to analyze the
sales data and arrive at purchase patterns, so your company can leverage that
information into profit. Now that data has become information. Now, the
question to ask is: what kind of "expertise" did you apply in transforming the
raw data into useful information? Can you store that "expertise", that "how
to", in some place, so that somebody else or perhaps some automated
process can use that "stored knowledge" to do future analysis? There, youprocess can use that stored knowledge to do future analysis? There, you
have your knowledge base.



Deductive Reasoning /  Modus Ponens
1. Deduce new information from logically related known information
2 A deductive argument offers assertions that lead automatically to a2. A deductive argument offers assertions that lead automatically to a 

conclusion  
For example if there is a dry wood, oxygen and a spark then there will be fire
Given : There is a wood, oxygen and a spark
We can deduce : There will be a fire
All men are Mortal, Socrates is a man therefore Socrates is mortal.

Inductive ReasoningInductive Reasoning

1. From a limited set of observations, we form a “generalization”
For example – Observation: All the crows that I have seen in my life are black

Conclusion: All crow are blackConclusion: All crow are black   
Abductive Reasoning

1. “Deduction is exact” in that the deductions follow  a logically provable way from 
the basic axioms (sentences)

2. Abductive is a form of deduction that allows for plausible inference ie 
conclusion may be wrong.

For example Implication : She carries an umbrella if it is rainingFor example Implication : She carries an umbrella if it is raining 
Axiom : She is carrying an umbrella

Inference / Conclusion: It is raining



Analogical reasoning
1. Draw analogy between two situations looking for similarities and differences

For example When you say driving a truck is just like driving a carFor example When you say driving a truck is just like driving a car. 

Commonsense Reasoning
1. Heuristic reasoning – gained thru experience, rule-of-thumb

for example If you are moving in a car when it is raining then reduce speed
Extensively used by doctors while diagnosing 

Non-Monotonic Reasoning

1. Used when the facts of the case is not static and changes with time
For example – If the wind blow then the curtain sway

After sometime this wind stops blowing the truth no longer exist        

Monotonic Reasoning

1 Used when the facts does not change over time1. Used when the facts does not change over time
for example  The sun rises in the east



Forward chaining is one of the two main methods of reasoning when using inference rules (in 
artificial intelligence) and can be described logically as repeated application of modus ponens. 
Forward chaining is a popular implementation strategy for expert systems, business and production 
rule systems. The opposite of forward chaining is backward chaining.y pp g g
Forward chaining starts with the available data and uses inference rules to extract more data (from 
an end user for example) until a goal is reached. An inference engine using forward chaining 
searches the inference rules until it finds one where the antecedent (If clause) is known to be true. 
When found it can conclude, or infer, the consequent (Then clause), resulting in the addition of new , , q ( ), g
information to its data.
Inference engines will iterate through this process until a goal is reached.
For example, suppose that the goal is to conclude the color of a pet named Fritz, given that he 
croaks and eats flies, and that the rule base contains the following four rules:, g
If X croaks and eats flies - Then X is a frog
If X chirps and sings - Then X is a canary
If X is a frog - Then X is green
If X is a canary - Then X is yellowy y
This rule base would be searched and the first rule would be selected, because its antecedent (If
Fritz croaks and eats flies) matches our data. Now the consequents (Then X is a frog) is added to 
the data. The rule base is again searched and this time the third rule is selected, because its 
antecedent (If Fritz is a frog) matches our data that was just confirmed. Now the new consequent ( g) j q
(Then Fritz is green) is added to our data. Nothing more can be inferred from this information, but 
we have now accomplished our goal of determining the color of Fritz.
Because the data determines which rules are selected and used, this method is called data-driven, 
in contrast to goal-driven backward chaining inference. The forward chaining approach is often g g g pp
employed by expert systems, such as CLIPS.
One of the advantages of forward-chaining over backward-chaining is that the reception of new 
data can trigger new inferences, which makes the engine better suited to dynamic situations in 
which conditions are likely to change.



Backward chaining starts with a list of goals (or a hypothesis) and works backwards from the consequent to the
antecedent to see if there is data available that will support any of these consequents.[2] An inference engine using
backward chaining would search the inference rules until it finds one which has a consequent (Then clause) thatbackward chaining would search the inference rules until it finds one which has a consequent (Then clause) that
matches a desired goal. If the antecedent (If clause) of that rule is not known to be true, then it is added to the list
of goals (in order for one's goal to be confirmed one must also provide data that confirms this new rule).
For example, suppose that the goal is to conclude the color of my pet Fritz, given that he croaks
An Example of Backward Chaining.
1 If X croaks and eats flies Then X is a frog1.If X croaks and eats flies – Then X is a frog
2.If X chirps and sings – Then X is a canary
3.If X is a frog – Then X is green
4.If X is a canary – Then X is yellow
This rule base would be searched and the third and fourth rules would be selected, because their consequents
(Then Fritz is green, Then Fritz is yellow) match the goal (to determine Fritz's color). It is not yet known that Fritz
is a frog, so both the antecedents (If Fritz is a frog, If Fritz is a canary) are added to the goal list. The rule base is
again searched and this time the first two rules are selected, because their consequents (Then X is a frog, Then X
is a canary) match the new goals that were just added to the list. The antecedent (If Fritz croaks and eats flies) is
known to be true and therefore it can be concluded that Fritz is a frog and not a canary The goal of determiningknown to be true and therefore it can be concluded that Fritz is a frog, and not a canary. The goal of determining
Fritz's color is now achieved (Fritz is green if he is a frog, and yellow if he is a canary, but he is a frog since he
croaks and eats flies; therefore, Fritz is green).
Note that the goals always match the affirmed versions of the consequents of implications (and not the negated
versions as in modus tollens) and even then, their antecedents are then considered as the new goals (and not the
conclusions as in affirming the consequent) which ultimately must match known facts (usually defined as
consequents whose antecedents are always true); thus, the inference rule which is used is modus ponens.
Because the list of goals determines which rules are selected and used, this method is called goal-driven, in
contrast to data-driven forward-chaining inference. The backward chaining approach is often employed by expert
systems.systems.
Programming languages such as Prolog, Knowledge Machine and ECLiPSe support backward chaining within
their inference engines




















